Equilateral Triangles in a Rectangle
All four triangles are equilateral. What fraction of the rectangle do they cover?
![](https://www.puzzleprime.com/wp-content/uploads/2020/12/Equilateral-Triangles-in-a-Rectangle-300x300.jpg)
SOLUTION
Let the rectangle be ABCD and the four equilateral triangles be ABO, ECO, DGO, DHO.
Because of symmetry, we can see that:
\angle BOE = \angle COF = \angle GOD = \angle HOA.
Therefore, triangles △BCO, △CGO, △FDO, △DAO, △DEC, △HCD are 30°-60°-90°, and
S(BEO)=S(ECO)=S(DHO)=S(HAO),
S(CFO)=S(FGO)=S(GDO).
Thus, if set S(FGO)=S, we find
S(BEO)=S(ECO)=S(CDO)=S(DHO)=S(HAO)=3S,
and
S(ABO)=S(DAO)+S(BCO)-S(CDO)=9S.
Finally, the answer is (9S+3S+3S+S)/24S=2/3.
![](https://www.puzzleprime.com/wp-content/uploads/2020/12/Equilateral-Triangles-in-a-Rectangle.jpg)
Responses