FEATURED

Two Monks on a Mountain

Two monks are standing on the two sides of a 2-dimensional mountain, at altitude 0. The mountain can have any number of ups and downs, but never drops under altitude 0. Prove that the monks can climb or descend the mountain at the same time on both sides, always staying at the same altitude, until they meet at the same point.

Enemies in the Parliament

In a parliament, there are 100 people, and some of these people are enemies with each other. Show that you can split the people into 2 groups so that each person has at least as many enemies in the opposite group as he has in his own.

Stones on a Chessboard

You place two stones on a chessboard and start moving them one by one, every time shifting a stone to an adjacent cell – left, right, up, or down, without letting the stones at any time occupy the same cell. Is it possible to find such a sequence of moves, that all possible combinations for the position of the stones occur exactly once?

Cucumbers

You had 10kg of cucumbers, each of which consisted of 99% water. After leaving them in the sun, some of the water in the cucumbers evaporated. If the cucumbers ended up with 98% water in them, how much of their weight did they lose?

Brick in the Wall

On the picture, you can see an example of a wall made of 2×1 bricks. On the wall, there are 2 cracks, which are straight lines passing through the whole wall from top to bottom and from left to right, without intersecting any bricks. 

Can you make the following walls without any cracks: 

  1. wall 5×6 with 15 bricks;
  2. wall 6×6 with 18 bricks?

Integer Dimensions

A large rectangle is partitioned into smaller rectangles, each of which has integer length or integer width. Prove that the large rectangle also has integer length or integer width.

Islands and Bridges

You need to cross a river, from the north shore to the south shore, via a series of 13 bridges and six islands, which you can see in the diagram below. However, as you approach the water, a hurricane passes and destroys some (possibly none/all) of the bridges. If the probability that each bridge gets destroyed is 50%, independently of the others, what is the chance that you will be able to cross the river after all?

Every Acute Triangle

Consider an arbitrary acute triangle ABC. Let E be the intersection of the bisector at vertex C and the bisection of the side AB. Let F and G be the projections of E on AC and BC respectively.

Since E belongs to the bisection of AB, we must have AE = BE. Also, since E belongs to the bisector of C, we must have EF = EG. However, this would imply that triangles AEF and BGF are identical, and then AF = BF. We also have that CF = CG, which implies that AC = BC. The arbitrarily chosen triangle ABC is isosceles!

Can you find where the logic fails?

Height Arrangement

Suppose you have 10 people with different heights in one row. Show that you can always remove 6 of them, so that the remaining 4 are arranged with respect to their heights (either increasing or decreasing).

Zombie Attack

Oh no, zombies are attacking your house!

Every second, a new zombie drops down on one of the 9 spots of your lawn, which is currently unoccupied. All zombies move towards your house on the left with constant speed, and each of them needs exactly 1 second to traverse a spot of the lawn. Once a zombie steps out of the lawn, it enters your house and waits there for the others (thus each zombie travels total distance between 1 and 9 spots).

Show that after some time, the total distance traversed by any 1000 consecutive zombies will be within the range of just 50 spots.

Remark: Assume your house can accommodate an unlimited amount of zombies.