Sum Up to 999

Can you find a triple of three-digit numbers that sum up to 999 and collectively contain all digits from 1 to 9 exactly once? How many such triples are there? What if the sum was 1000?

FEATURED

A Broken Circle

There are N points on a circle. If we draw all the chords connecting these points and no three of them intersect at the same point, in how many parts will the interior of the circle get broken?

For example, when N is equal to 1, 2, 3, 4, and 5, we get 1, 2, 4, 8, and 16 parts respectively.

The Die Game

You pick a number between 1 and 6 and keep throwing a die until you get it. Does it matter which number you pick for maximizing the total sum of the numbers in the resulting sequence?

In the example below, the picked number is 6 and the total sum of the numbers in the resulting sequence is 35.

Splitting Coins

You split 1000 coins into two piles and count the number of coins in each pile. If there are X coins in pile one and Y coins in pile two, you multiple the two numbers to get XY. Then you split both piles further, repeating the same counting and multiplication process, and adding the new multiplication results to the first one. The process ends when you end up with 1000 single-coin piles. Prove that you will always get the same final result, no matter how the piles have been divided during the splitting process.

For example, if you start with 5 coins and split them into a pile of 2 and a pile of 3, you get the number 2×3=6. Then, if you split the pile of 3 into a pile of 1 and a pile of 2, you will add 1×2=2 more to the 6 and get 8. Finally, if you split the two piles of 2 into single-coin piles, you will end up with 8+1+1=10.

One Hundred Rooms

There are 100 rooms in a row in a building and inside each room there is a lamp that is turned off. One person enters each room and switches the lamp inside. Then, a second person enters every second room (2, 4, 6, etc.) and switches the lamp inside. A third person switches the lamp in every third room and so on and so far, until person #100 switches the lamp in room 100. How many lamps are turned on at the end?

Annihilating Matrix

The numbers 1, 2, … , 100 are arranged in a 10×10 table in increasing order, row by row and column by column, as shown below. The signs of 50 of these numbers are flipped, such that each row and each column have exactly 5 positive and 5 negative numbers. Prove that the sum of all numbers in the resulting table is equal to 0.

Source:

Quantum Magazine, November-December 1991

Math Homework

A student was given math homework consisting of the following three problems. What is so special about this homework?

  1. What would the value of 190 in hexadecimal be?
  2. Twenty-nine is a prime example of what kind of number?
  3. At time t = 0, water begins pouring into an empty tank so that the volume of water is changing at a rate V’(t)=sec²(t). For time t = k, where 0 < k < π/2, determine the amount of water in the tank.
Source:

Math Horizons, MAA

A Very Cool Number

Find a number containing every digit 0-9 exactly once, such that for every 1≤N≤10, the leftmost N digits comprise a number, divisible by N.

More Sisters on Average

Who have more sisters on average in a society: boys, girls, or is it equal?

Remark: Assume that each child is born a boy or a girl with equal probability, independent of its siblings.