Circular Racetrack

Suppose you are on a one-way circular racetrack. There are 100 gas cans randomly placed on different locations of the track and the total amount of gas in the cans is enough for your car to complete an entire circle. Assume that your car has no gas initially, but you can place it at any location on the track, then pick up the gas cans along the way and use them to fill the tank. Show that you can always choose a starting position so that you can complete an entire circle.

Send More Money

Replace every letter with a different digit between 0 and 9, such that you get a correct calculation.

FEATURED

Sum Up to 15

Tango and Cash are playing the following game: Each of them chooses a number between 1 and 9 without replacement. The first one to get 3 numbers that sum up to 15 wins. Does any of them have a winning strategy?

FEATURED

David Copperfield

David Copperfield and his assistant perform the following magic trick. The assistant offers a person from the audience to pick 5 arbitrary cards from a regular deck and then hands them back to him. After the assistant sees the cards, he returns one of them to the audience member and gives the rest one by one to David Copperfield. After the magician receives the fourth card, he correctly guesses what card the audience member holds in his hand. How did they perform the trick?

FEATURED

Population

In certain society all parents stop having children right after they get their first boy. After 1000 years, approximately what will be the percentage of the women in the society?

FEATURED

Shark Attack

A man stands in the center of a circular field which is encompassed by a narrow ring of water. In the water there is a shark which is swimming four times as fast as the man is running. Can the man escape the field and get past the water to safety?

FEATURED

The Monty Hall Show

You are in Monty Hall’s TV show where in the final round the host gives you the option to open one of three boxes and to receive the reward inside. Two of the boxes contain just a penny, while the third box contains $1.000.000. In order to make the game more exciting, after you pick your choice, the rules require the host to open one of the two remaining boxes, such that it contains a penny inside. After that he asks you whether you want to keep your chosen box or to switch it with the third remaining one. What should you do?

Black and White

A boy draws 2015 unit squares on a piece of paper, all oriented the same way, possibly overlapping each other. Then the colors the resulting picture in black and white chess-wise, such that any area belonging to an even number of squares is painted white and any area belonging to an odd number of squares is painted black.

Prove that the total black area is at least one.

In the Padurea Forest

In the Padurea forest there are 100 rest stops. There are 1000 trails, each connecting a pair of rest stops. Each trail has some particular level of difficulty with no two trails having the same difficulty. An intrepid hiker, Sendeirismo has decided to spend a vacation by taking a hike consisting of 20 trails of ever increasing difficulty. 
Can he be sure that it can be done?

He is free to choose the starting rest stop and the 20 trails from a sequence where the start of one trail is the end of a previous one.

Battleship

A battleship starts moving at 12 PM from an integer point on the real line with constant speed, landing on every hour again on an integer point. Every day at midnight you can shoot at an arbitrary point on the real plane, trying to destroy the battleship. Can you find a strategy with which you will eventually succeed to do this?