FEATURED

Houses on a Farm

Is it possible to connect each of the houses with the well, the barn, and the mill, so that no two connections intersect each other?

No, it is impossible. Here is a convincing, albeit a informal proof.

Imagine the problem is solvable. Then you can connect House A to the Well, then the Well to House B, then House B to the Barn, then the Barn to House C, then House C to the Mill, and finally the Mill to House A. Thus, you will create one loop with 6 points on it, such that houses and non-houses are alternating along the loop. Now, you must connect Point 1 with Point 4, Point 2 with Point 5, Point 3 with Point 6, such that the three curves do not intersect each other. However, you can see that you can draw no more than one such curve neither on the inside, nor the outside of the loop. Therefore, the task is indeed impossible.

More rigorous, mathematical proof can be made using Euler’s formula for planar graphs. We have that F + V – E = 2, where F is the number of faces, V is the number of vertices, and E is the number of edges in the planar graph. We have V = 6 and E = 9, and therefore F = 5. Since no 2 houses or 2 non-houses can be connected with each other, every face in this graph must have at least 4 sides (edges). Therefore, the total number of sides of all faces must be at least 20. However, this is impossible, since every edge is counted twice as a side and 20/2 > 9.

FEATURED

Game of Coins

Kuku and Pipi decide to play a game. They arrange 50 coins in a line on the table, with various nominations. Then, alternating, each player takes on their turn one of the two coins at the ends of the line and keeps it. Kuku and Pipi continue doing this, until after the 50th move all coins are taken. Prove that whoever starts first can always collect coins with at least as much value as their opponent.

Remark: On the first turn, Kuku can pick either coin #1 or coin #50. If Kuku picks coin #1, then Pipi can pick on her turn either coin #2 or coin #50. If Kuku picks coin #50, then Pipi can pick on her turn either coin #1 or coin #49.

Let’s assume Kuku starts first. In the beginning, he calculates the total value of the coins placed on odd positions in the line and compares it with the total value of the coins placed on even positions in the line. If the former has a bigger total value, then on every turn he takes the end coin which was placed on odd position initially. If the latter has bigger value, then on every turn he takes the end coin which was placed on even position initially. It is easy to see that he can always do this because after each of Pipi’s turns there will be one “odd” coin and one “even” coin at the ends of the line.

Three Cards

There are three playing cards in a row. There is a two to the right of a king. There is a diamond to the left of a spade. There is an ace to the left of a heart. There is a heart to the left of a spade. Identify the three cards.

The cards are an Ace of Diamonds, a King of Hearts, and a Two of Spades.

FEATURED

Cheryl’s Birthday

Cheryl’s birthday is one of 10 possible dates:

May 15
May 16
May 19
June 17
June 18

July 14
July 16
August 14
August 15
August 17

Cheryl tells the month to Albert and the day to Bernard.

Albert: I don’t know the birthday, but I know Bernard doesn’t know either.
Bernard: I didn’t know at first, but now I do know.
Albert: Now I also know Cheryl’s birthday.

When is Cheryl’s birthday?

If Albert knows that Bernard doesn’t know when the birthday is, then the birthday can’t be on May 19 or June 18. Also, Albert must know that the birthday can’t be on these dates, so May and June are completely ruled out.

If Bernard can deduce when the birthday is after Albert’s comment, then the birthday can’t be on 14th. The remaining possibilities are July 16, August 15, and August 17.

Finally, if Albert figures out when the birthday is after Bernard’s comment, then the date must be July 16.

Perfect Day

Dear Diary,
This morning, I woke up at 9 o’clock. My first job was to drink a glass of water and brush my teeth. After that, I ate an apple, 2 bananas, and a toast with almond butter for breakfast. Then, I went to the gym for one hour, took a shower, and came back home at eleven. I cooked a few pieces of chicken with sweet potatoes for lunch; ate everything. In the afternoon, I started working on my projects while listening to classical music. In the evening, I went for the 2nd time to the gym, did cardio for half-an-hour, and after that visited my friend’s apartment. We had together one big pizza for dinner and in the end, I fell asleep on his couch.

As you can see, my entire day was perfect, except that my laptop keyboard broke. Can you figure out what’s wrong with it?

All of the numbers in the text are written using digit symbols except for the ones containing “one” (“one”, “eleven”, “first”). This inconsistency implies that the number “1” key on the keyboard is broken.

A Lady and a Cowboy

A lady and a cowboy lie next to a bullet, a dime, and a hook. As a result, someone is delighted but doesn’t show it. What are they doing?

In Poker, the Queen is called “lady”, the King is called “cowboy”, the Ace is called “bullet”, the 10 is called “dime”, and the Jack is called “hook”. Thus, the poker player has a straight and that’s why he is delighted.