Zombie Attack

Oh no, zombies are attacking your house!

Every second, a new zombie drops down on one of the 9 spots of your lawn, which is currently unoccupied. All zombies move towards your house on the left with constant speed, and each of them needs exactly 1 second to traverse a spot of the lawn. Once a zombie steps out of the lawn, it enters your house and waits there for the others (thus each zombie travels total distance between 1 and 9 spots).

Show that after some time, the total distance traversed by any 1000 consecutive zombies will be within the range of just 50 spots.

Remark: Assume your house can accommodate an unlimited amount of zombies.

Since the number of zombies on the lawn never decreases, it must stabilize at some point. Therefore after some time T, there will be exactly K zombies on the lawn at all times, 1 ≤ K ≤ 9.

Consider any 1000 consecutive zombies appearing past time T and take a picture of the lawn at the moment each of them gets dropped on it – this makes a total of 1000 pictures. Since on every picture, there are exactly K zombies, we see exactly 1000K zombies on these pictures.

Now notice that almost all of the selected 1000 zombies appear on as many pictures as lawn spots they traverse. The zombies for which this is not true are just the K zombies, which appear on the last picture. We easily see that they have traveled between 1 + 2 + … + K − 1 and (10 − K) + (11 − K) + … + 8 spots more than the number of pictures they appear on.

Similarly, on the 1000 pictures we have taken, there are K−1 additional zombies, which appear multiple times (you can see all of them on the first picture). The total number of times they show up is again between 1 + 2 + … + K − 1 and (10 − K) + (11 − K) + … + 8.

Therefore we conclude that the total distance the selected 1000 zombies travel is equal to 1000K ± {[(10 − K) + (11 − K) + … + 8] − [1 + 2 + … + K − 1]} = 1000K ± (9 − K)(K − 1).Since (9 − K)(K − 1) is a number between 0 and 16, this solves the problem.

Gold and Nickel

You have 15 identical coins – 2 of them made of pure gold and the other 13 made of nickel (covered with thin gold layer to mislead you). You also have a gold detector, with which you can detect if in any group of coins, there is at least one gold coin or not. How can you find the pure gold coins with only 7 uses of the detector?

First, we note that if we have 1 gold ball only, then we need:

  • 1 measurement in a group of 2 balls
  • 2 measurements in a group of 4 balls
  • 3 measurements in a group of 8 balls

Start by measuring 1, 2, 3, 4, 5.

  1. If there are gold balls in the group, then measure 6, 7, 8, 9, 10, 11.
    • If there are gold balls in the group, then measure 5, 6, 7.
      • If there are no gold balls among them, then there is a gold ball among 1, 2, 3, 4, and a gold ball among 8, 9, 10, 11, so we can find the gold balls with the remaining 2 measurements.
      • If there are gold balls in 5, 6, 7, then measure 5, 8, 9. If there are gold balls there, then 5 must be gold, and we can find the other gold ball among 6, 7, 8, 9, 10, 11 with the remaining 3 measurements. If there is no gold ball among 5, 8, 9, then there is a gold ball among 1, 2, 3, 4, and a gold ball among 6, 7, so again we can find them with only 3 measurements.
    • If there are no gold balls in the group, then measure 5, 12, 13.
      • If there are no gold balls among them, then measure 14, 15. If none of them is gold, then measure individually 1, 2, and 3 to find which are the 2 gold balls among 1, 2, 3, 4. Otherwise, there is a gold ball among 1, 2, 3, 4, and among 14, 15, and we can find them with the remaining 3 measurements.
      • If there are gold balls among 5, 12, 13, then measure 5, 14, 15. If none of them is gold, then there is a gold ball among 1, 2, 3, 4, and a gold ball among 12, 13, so we can find them with 3 measurements. Otherwise, 5 is gold, and again we can find the other gold ball among 1, 2, 3, 4, 12, 13, 14, 15 with 3 measurements.
  2. If there are no gold balls among 1, 2, 3, 4, 5, then we measure 6, 7, 8.
    • If there are gold balls in the group, then measure 9, 10, 11, 12, 13.
      • If there are no gold balls among them, we measure individually 6, 7, 8, 14.
      • If there is a gold ball among 9, 10, 11, 12, 13, then there is another one among 6, 7, 8. We measure 8, 9. If none of them is gold, then we can find the gold among 6, 7, and the gold among 10, 11, 12, 13, with 3 measurements total. If there is a gold ball among 8, 9, then we measure 10, 11, 12, 13. If none of them is gold, then 9 is gold and we find the other gold ball among 6, 7, 8 with 2 more measurements. If there is a gold ball among 10, 11, 12, 13, then we can find it with 2 measurements. The other gold ball must be 8.
    • If there are no gold balls in the group, then measure 9, 10.
      • If there are no gold balls among them, then measure individually 11, 12, 13, 14.
      • If there are gold balls among 9, 10, then measure 11, 12, 13, 14. If there is a gold ball among them, then there is another one among 9, 10, and we can find them both with 3 measurements. Otherwise, we measure 9 and 10 individually.

The Troll Brothers

There are four troll brothers – Wudhor, Xhaqan, Yijlob, and Zrowag.

  • Wudhor always says the truth.
  • Xhaqan always lies.
  • Yijlob lies or says the truth unpredictably.
  • Zrowag is deaf and never answers.

You must ask these brothers four YES/NO questions (one troll per question), and figure out their names. What questions would you ask?

Coming soon.

Source:

Puzzling StackExchange

Pawns on the Chessboard

Six pawns are placed in the middle squares of the main diagonal of a chess board – b7, c6, d5, e4, f3, g2. You are allowed to take any pawn on the chessboard and replace it with two pawns – one on the square above it and one on the square on its right, in case there are empty squares there. If after several moves there are no more pawns on the main diagonal, show that all the squares above it except for h8 are covered by pawns.

Assign the following weights on the squares of the chessboard:

  • 1 on the main diagonal a8 – h1
  • 1/2 on the diagonal b8 – h2
  • 1/4 on the diagonal c8 – h3
  • 1/8 on the diagonal d8 – h4
  • 1/16 on the diagonal e8 – h5
  • 1/32 on the diagonal f8 – h6
  • 1/64 on the diagonal g8 – h7

Every time you make the splitting move, the total sum of the numbers of the squares covered by pawns remains a constant. At the beginning that sum is 6. Since 7/2 + 6/4 + 5/8 + 4/16+ 3/32 + 2/64 = 6, all 27 squares above the main diagonal, except the top-right corner (on which you can not place a pawn in any way), must be covered by pawns at the end.

Obtuse Angle

Prove that among any 9 points in (3D) space, there are three which form an obtuse angle.

Let the points be labeled A1, A2, … , A9, and P be their convex hull. If we assume that all angles among the points are not obtuse, then the interiors of the bodies P + A1, P + A2, … , P + A9 should be all disjoint. That is because, for every Ai and Aj, P must be bound between the planes passing through Ai and Aj which are orthogonal to the segment AiAj. However, all of these 9 bodies have the same volume and are contained in the body P + P, which has 8 times larger volume. This is a contradiction, and therefore our assumption is wrong.

Riddled and Dismembered

The following is a riddle. Do not solve the riddle. Instead, explain the title.

My top is tilted to the light,
A trumpet, almost, in its form.
You court a woman? There I am.
I please, palliate, perfume and mourn.
Your grief I lament. Slay me and
I will you last amen adorn.

The riddle is about a (dismembered) flower. Its different parts are hidden within the words of the riddle:

My top is tilted to the light, -> pistil
A trumpetalmost in its form. -> petal
You court a womanThere I am. -> anther
I pleasepalliate, perfume and mourn. -> sepal
Your grief I lament. Slay me and -> filament
I will your last amen adorn. -> stamen

Source:

Puzzling StackExchange

Cover the Grid

You must cover a 7×7 grid with L-shaped triminos and S-shaped tetrominos, without overlapping (flipping and rotating is permitted). What is the minimum number of pieces you can use in order to do this?

Remark: All pieces must be placed entirely on the board.

Consider all cells in the grid which lie in an odd row and odd column – there are 16 of them. Since each of the two pieces can cover at most 1 of these cells, we need at least 16 pieces. Giving an example with 16 pieces is easy.

Traveling Salesmen

Between every pair of major cities in Russia, there is a fixed travel cost for going from either city to the other. Traveling salesman Alexei Frugal starts in Moscow and visits all cities exactly once, choosing every time the cheaper flight to a city he has not visited so far. Salesman Boris Lavish starts in St Petersburg and visits all cities exactly once, choosing every time the most expensive flight to a city he has not visited so far. Can Alexei end up spending more money than Boris after they end their journeys?

No, it is impossible. For every trip of Alexei we will choose a trip of Boris, which costs at least as much.

Let the number of cities is n and Alexei visits them in order 1 -> 2 -> … -> n.

If Boris visits city n-1 before city n, then pair Alexei’s trip (n-1, n) with Boris’ trip (n-1, #). Notice that C(n-1, n) < C(n-1, #).

If Boris also visits city n-2 before city n, then pair Alexei’s trip (n-2, n-1) with Boris’ trip (n-2, #). Notice that C(n-2, n-1) < C(n-2, n) < C(n-2, #).

Continue like this until get to a city k which Boris visits after city n. Then pair Alexei’s trip (k, k+1) with Boris’ trip (n, #). Notice that C(k, k+1) < C(k, n) < C(n, #).

Next, check whether Boris visits city k – 1 before city k, and pair Alexei’s trip (k-1, k) with either (k-1, #) or (k, #). Continue like this, until pair all of Alexei trips with more expensive Boris trips.

Chess Aggression

Starting from this position, can you make 39 consecutive checks – 20 from White and 19 from Black?

The sequence is as follows:

1. Nh2+ f1N+
2. Rxf1+ gxf1N+
3. Ngxf1+ Bg5+
4. Qxg5+ Bg2+
5. Nf3+ exf3+
6. Kd3+ Nc5+
7. Qxc5+ Re3+
8. Nxe3+ c1N+
9. Qxc1+ d1Q+
10. Qxd1+ e1N+
11. Qxe1+ Bf1+
12. Nxf1+ f2+
13. Ne3+ f1Q+
14. Qxf1+ Qxf1+
15. Nxf1+ Re3+
16. Nxe3+ b1Q+
17. Rxb1+ axb1Q+
18. Nc2+ Nf2+
19. Bxf2+

The Answer to This Riddle Is a Number

The key to this riddle is only for you
Below are instructions, above this the clue
First strike the one near the head of a year
Then remove he who begins a cheer
Next take away the end of a tunnel
Then let us go to solve this puzzle
What you first took you must now take again
With three you are left, but fret not dear friend
Fattest to front and thinnest to rear
Add in two “eyes” and all becomes clear

Remark: The instructions in this riddle are quite literal.

The answer is XVIII, or 18 in Roman numerals.

The key is “only for you” – EXCLUSIVE. Remove “the one near the head of a year” – E. Remove “he who begins a cheer” – C. Remove “the end of the tunnel” – L. Remove “us” – U and S. Remove again E. Now you are left with X, I, V. Arrange them “fattest to front and thinnest to rear” – X > V > I. Add “two ‘eyes'” – I and I, so you get XVIII=18.

Source:

Puzzling StackExchange