Knights and Coins

Bob and Jane are taking turns, placing knights and coins respectively on a chessboard. If Bob is allowed to place a knight only on an empty square which is not attacked by another knight, how many pieces at most can he place before running out of moves? Assume that Jane starts second and plays optimally, trying to prevent Bob from placing knights on the board.

Light Bulbs in the Attic

There are three light bulbs in your attic. All of them are turned off and their switches are installed downstairs. You can play with the switches as much as you want and after that, you can visit the attic above just once. How can you find out which switch to which bulb corresponds?

The Twelve Matchsticks

With 12 matches you can easily create a shape with area 9 and a shape with area 5, as shown on the picture below. Can you rearrange the 12 matchsticks, so that they encompass an area of 4?

Remark: You should have only one resulting shape and no matches should be unused.

Cover the Table

100 coins are placed on a rectangular table, such that no more coins can be added without overlapping. Show that you can cover the entire table with 400 coins (overlapping allowed).

Borromean Rings

Borromean rings are rings in the 3-dimensional space, linked in such a way that if you cut any of the three rings, all of them will be unlinked (see the image below). Show that rigid circular Borromean rings cannot exist.

Securing the Box

There are 5 people who possess a box. You are allowed to secure the box with as many different locks as you like and distribute any combination of keys for these locks to any people among the 5. Find the least number of locks needed, so that no 2 people can open the box, but any cannot people can open it.

Relabeling Dices

Can you relabel two 6-sided dices, so that every face has a positive number of dots, and also their sum has the same probability distribution?

The Lion and the Zebras

The lion plays a deadly game against a group of 100 zebras that takes place in the steppe (an infinite plane). The lion starts in the origin with coordinates (0,0), while the 100 zebras may arbitrarily pick their 100 starting positions. The lion and the group of zebras move alternately:

  • In a lion move, the lion moves from its current position to a position at most 100 meters away.
  • In a zebra move, one of the 100 zebras moves from its current position to a position at most 100 meters away.
  • The lion wins the game as soon as he manages to catch one of the zebras.

Will the lion always win the game after a finite number of moves? Or is there a strategy for the zebras that lets them survive forever?

Source:

Puzzling StackExchange